Search results for "AM fungi"

showing 5 items of 5 documents

Genes encoding transcription factors in Glomus intraradices and their expression at the appressoria stage of arbuscular mycorrhiza interactions

2007

International audience; Molecular pathways governing the life cycle of arbuscular mycorrhizal (AM) fungi and their symbiotic interactions with root tissues are not yet fully understood. Most studies fo fungal responses to host plants have targeted developmental stages before root contact (germinating spores), or after root colonization (intraradical mycelium). We are focusing on the early cell events of appressoria contact with the root surface which are essential to the successful outcome of the AM symbiosis. Recent monitoring of Glomus intraradices gene expression at this stage has revealed differential fungal responses to roots of host and non-host (Myc- mutants) M. truncatula (Seddas et…

[SDV] Life Sciences [q-bio]ROOT COLONISATIONGENES EXPRESSIONGLOMUS INTRARADICES[SDV]Life Sciences [q-bio]AM SYMBIOSISfungiARBUSCULAR MYCORRHIZA INTERACTIONSGENE EXPRESIONAM FUNGIMEDICAGO TRUNCATULAComputingMilieux_MISCELLANEOUS
researchProduct

The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf…

2015

Over time, anthropogenic activities have led to severe cadmium (Cd) and arsenic (As) pollution in several environments. Plants inhabiting metal(loid)-contaminated areas should be able to sequester and detoxify these toxic elements as soon as they enter roots and leaves. We postulated here that an important role in protecting plants from excessive metal(loid) accumulation and toxicity might be played by arbuscular mycorrhizal (AM) fungi. In fact, human exploitation of plant material derived from Cd- and As-polluted environments may lead to a noxious intake of these toxic elements; in particular, a possible source of Cd and As for humans is given by cigarette and cigar smoke. We investigated …

AntioxidantPhysiologyNicotiana tabacummedicine.medical_treatmentAM fungi Arsenic Cadmium Cigarettes Glutathione Mycorrhiza Smoking Tobacco ARBUSCULAR MYCORRHIZAL FUNGI PHOSPHATE-UPTAKE SYSTEM HOLCUS-LANATUS L GLOMUS-MOSSEAE PHYTOCHELATIN SYNTHASE TRANSGENIC TOBACCO BINDING PEPTIDES L. TYPES ACCUMULATION TOLERANCEPlant SciencePlant RootsAntioxidantsARBUSCULAR MYCORRHIZAL FUNGIGlomeromycotachemistry.chemical_compoundMycorrhizaeSoil PollutantsMycorrhizaHOLCUS-LANATUS LCadmiumbiologyMedicine (all)SmokingAdaptation PhysiologicalGlutathioneAM fungi; Arsenic; Cadmium; Cigarettes; Glutathione; Mycorrhiza; Smoking; Tobacco; Adaptation; Physiological; Antioxidants; Glomeromycota; Mycorrhizae; Plant Leaves; Plant Roots; Soil Pollutants; Stress; Symbiosis; Plant Science; Genetics; Physiology; Medicine (all)AM fungiBINDING PEPTIDESCadmiumSettore BIO/07 - EcologiaGLOMUS-MOSSEAEPhysiologicalchemistry.chemical_elementPHYTOCHELATIN SYNTHASEFungusStressAM fungi; arsenic; cadmium; cigarettes; glutathione; mycorrhiza; smoking; tobaccoArsenicSymbiosisStress PhysiologicalBotanyTobaccomedicineGeneticsTOLERANCEAdaptationGlomeromycotaSymbiosisACCUMULATIONCigarettesfungiL. TYPESGlutathionebiology.organism_classificationPHOSPHATE-UPTAKE SYSTEMTRANSGENIC TOBACCOPlant LeaveschemistryMycorrhiza
researchProduct

Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress.

2014

Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N) fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season) on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rai…

RainBiomasslcsh:MedicinePlant ScienceSoil ChemistryTrifolium alexandrinumMycorrhizaeBiomasslcsh:ScienceSicilyPlant Growth and DevelopmentMultidisciplinaryEcologyTemperaturefood and beveragesAgriculturePlantsDroughtsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeChemistryAgricultural soil scienceNitrogen fixationN fixationAM fungiResearch ArticleField experimentWater stressGrowing seasonForageCropsMycologyBiologyMicrobiologyCropAgricultural ProductionSymbiosisStress PhysiologicalNitrogen FixationPlant-Environment InteractionsEnvironmental ChemistryBiologyAM fungi; Trifolium alexandrinum; N fixation; Water stressAnalysis of VarianceNitrogen IsotopesPlant Ecologyfungilcsh:RFungiSustainable AgricultureAgronomyTrifoliumlcsh:QAgronomic EcologyAgroecologyPLoS ONE
researchProduct

The effect of arbuscular mycorrhizal fungi on total plant nitrogen uptake and nitrogen recovery from soil organic material

2013

SUMMARYArbuscular mycorrhizal (AM) fungi increase nitrogen (N) uptake by their host plants, but their role in plant N capture from soil organic material is still unclear. In particular, it is not clear if AM fungi compete with the host plant for the N coming from the decomposing organic matter (OM), especially when the AM extraradical mycelium (ERM) and plant roots share the same soil volume. The goal of the present research was to study the effects of AM fungi on wheat N capture after the addition of 15N-labelled OM to soil. Durum wheat (Triticum durum) was grown under controlled conditions in a sand:soil mix and the following treatments were applied: (1) AM inoculation with Glomus mosseae…

chemistry.chemical_classificationbiologyInoculationNitrogen deficiencySoil biologyN uptakefungiSoil organic materialfood and beverageschemistry.chemical_elementMineralization (soil science)biology.organism_classificationNitrogenSettore AGR/02 - Agronomia E Coltivazioni ErbaceeAgronomychemistryGeneticsAnimal Science and ZoologyOrganic matterAM fungiAgronomy and Crop ScienceGlomusMyceliumSettore AGR/16 - Microbiologia AgrariaThe Journal of Agricultural Science
researchProduct

Arbuscular mycorhizal proteomes: what news at the nearby and distant horizon?

2007

International audience; Proteomics has soon emerged as a powerful tool to point out protein modifications in roots interacting with arbuscular mycorrhiza (AM) fungi. Depending on the developmental mycorrhizal stage and on the available amount of mycorrhizal material, untargeted and/or sub-cellular proteomic approaches were applied to reveal and identify proteins whose accumulation was modified during the AM colonisation of Medicago truncatula roots. For the early stage of symbiosis, the protein patterns obtained from noninoculated roots and roots synchronized for appressorium formation in wild-type (Jemalong J5), penetration-defective (TRV25, dmi3) and autoregulation-defective (TR122, sunn)…

[SDV] Life Sciences [q-bio]GLOMUS MOSSEAE[SDV]Life Sciences [q-bio]GLOMUS INTRARADICESfungiPROTEOMICS APPROACHESARBUSCULAR MYCORRHIZAPROTEOMESMEDICAGO TRUNCATULAAM FUNGIPROTEINS ACCUMULATIONS
researchProduct